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Abstract

An acoustic model is presented for analyzing transient waves from impact on a mass of confined comminuted material.

Two approaches are considered: a modal approach utilizing the static-dynamic superposition method, and a finite

difference approach. For prescribed motion at the footprint, analysis proceeds by superimposing response from several

external annular segments of unit pressure gradient and with time-dependent weights yielding a combined response equal

to the prescribed instantaneous motion. Pressure histories from the two approaches are in agreement. The effect on

response of prescribed motion parameters and wall mobility is studied.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

In ballistic events of metal projectiles striking ceramic tiles, the shock generated at the interface of projectile
and tile yields the projectile and starts the propagation of cracks into the brittle ceramic material. As long as
the comminuted ceramic material remains in the path of the eroding projectile, its motion is resisted producing
deceleration. As strain energy of broken ceramic is converted to kinetic energy, comminuted ceramic material
is propelled parallel and opposite to the projectile motion. This reduces resistance to projectile motion
allowing the projectile to penetrate further. It was observed that confining a comminuted ceramic for longer
time after crack initiation enhances its stopping ability. One way to confine comminuted material is to
encapsulate the ceramic tile in a strong but light thin metallic shell. After cracking, the ceramic is broken into
small particles varying in size from powder-like at the projectile’s footprint to larger chunks remote from the
footprint. In the comminuted state, the ceramic looses its shear strength while maintaining its compressive
strength similar to the case of a soil whose only resistance to shear stresses is friction. Consequently, pressure
generated by the penetrating projectile can be approximated by a piston with prescribed time-dependent
motion acting on a fluid volume confined by compliant boundaries. It is the pressure rise in the sand-like
ceramic confined by the capsule that ultimately fails, culminating in ejecta of the broken material and
reduction in resistance against projectile penetration. Since the comminuted material is confined by the
resilient walls of the capsule, deformations and particle motions are small justifying linear acoustic theory.
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Moreover, friction between particles and the inability to resist tension reduce the possibility of shock
formation.

To justify the validity of the linear acoustic model in simulating this seemingly nonlinear phenomenon,
results of the present linear acoustic analysis with compliant boundaries are compared with results from a
nonlinear general-purpose finite difference program ‘‘EPIC2’’. The magnitude of pressure near and remote
from the projectile’s footprint compare favorably from the two models. In fact, the instantaneous radial
dynamic pressure distribution in the capsule from the two models also compares favorably during the event
from impact to times when pressure is attenuated almost completely.

This comparison between results of a nonlinear simulation that considers crack initiation and propagation
including the interaction between the metallic capsule and the comminuted ceramic, and such an over-
simplified linear acoustic model clearly indicates that the nonlinearity during the event is negligible and that a
linear acoustic model is sufficiently accurate to simulate the event provided compliance of the capsule’s walls
are carefully considered.

Acoustic wave propagation governed by the Helmholtz equation has been treated extensively in the
literature. Solution techniques range from analytical for simple geometries to numerical for problems with
complicated geometry, medium inhomogeniety and nonlinearity. Theil [1] treats the 1-D viscoelastically
damped wave equation analytically. Yserentant [2] shows how a consistent discretization of the acoustic
equation can be recovered from the particle model of compressible fluids [3]. Sina and Khashayar [4] solve the
3-D wave equation analytically for arbitrary non-homogeneous media adopting the differential transfer
matrix. Sujith et al. [5] determine an exact solution to 1-D transient waves in curvilinear coordinates adopting
transformation of variables suggested by the WKB approximation. Hamdi et al. [6] present exact solitary wave
solutions of the 1-D wave propagation in nonlinear media with dispersion. Yang [7] solves numerically the
wave equation with attenuation from linear friction utilizing grid modification to track wave fronts accurately.
Narayan [8] solves the 3-D transient acoustics in inhomogeneous media by finite difference and Schemann and
Bornemann [9] apply the adaptive Rothe integrator. Bailly and Juve [10] present a numerical solution to the 2-
D acoustic propagation from transient sources using the dispersion-relation-preserving scheme in space and a
fourth-order Kutta–Runge in time. Wagner et al. [11], and Gaul and Wenzel [12] use a hybrid boundary
element method for frequency and transient acoustic response in bounded and unbounded regions.
Mehdizadeh and Paraschivoiu [13] develop a spectral element method to solve the 3-D Helmholtz equation
retaining accuracy for large wavenumbers. The present work is the first to address analytically the 3-D
transient propagation from impact in a confined medium with compliant boundaries.

Section 2 formulates the modal approach. The prescribed pressure gradient at the footprint is treated by the
static-dynamic superposition method [14]. Pressure is expressed as a superposition of two solutions; a static
solution satisfying inhomogeneous boundary conditions multiplied by the time dependence of the forcing
function, and a modal solution satisfying homogeneous boundary conditions. Since the excited face has a
mixed boundary condition, a mixed boundary value problem arises. This difficulty can be overcome by the
influence method [15].

To confirm results of this modal approach that relies on influence coefficients, comparisons are made to a
finite difference solution developed in Appendix A. One advantage of this solution is that mixed boundary
conditions are readily included. Section 3 discusses numerical results. Since the modal analysis in Section 2
applies the static-dynamic superposition method to the external excitation, a comparison of the static
solutions from the two methods is presented first. This is followed by transient response in a constrained layer.
2. Analysis

The pressure from impact of comminuted material in a flexible cylindrical capsule fðr; zÞ; 0prprd ; 0pzphg

is approximated by the transient acoustic pressure in a compressible fluid disk enclosed in a cavity with
compliant boundaries and with time-dependent acceleration applied over a concentric footprint rprp. This
translates to the boundary conditions

qrpðrd ; z; tÞ þ Y rpðrd ; z; tÞ ¼ 0, (1a)
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qzpðr; 0; tÞ ¼
�r €f wðtÞ; 0prprp;

Y zpðr; 0; tÞ; rporprd ;

(
(1b)

qzpðr; h; tÞ þ Y zpðr; h; tÞ ¼ 0, (1c)

where pðr; z; tÞ is acoustic pressure, Y r;Y z are frequency independent mobilities of the resilient boundaries
relating pressure to normal pressure gradient determined in Ref. [16], (r; z) are radial and axial coordinates, r
is density, (h; rd ) are layer length and radius, rp is footprint radius, t is time, €f wðtÞ is prescribed acceleration at
the footprint, ð�Þ is time derivative, and HðrÞ is the Heaviside function.

Acoustic propagation in the fluid disk is governed by the acoustic equation

ðqrr þ 1=rqr þ qzz � 1=c2bqttÞpd ¼ 0 (2)

with boundary conditions given by Eq. (1), where z has its origin at the excited boundary. Express pðr; z; tÞ as a
superposition of three terms:

pðr; z; tÞ ¼ �psðr; zÞr €f wðtÞ þ pd ðr; z; tÞ þ ps0f wðtÞ. (3)

pdðr; z; tÞ is the dynamic solution satisfying Eq. (2) and the homogeneous boundary conditions (1), and psðr; zÞ
is the static solution satisfying

r2
0ps ¼ 0 (4a)

and the inhomogeneous boundary conditions

qrpsðrd ; zÞ þ Y rpsðrd ; zÞ ¼ 0,

qzpsðr; 0Þ ¼
�1; 0prprp;

Y zpsðr; 0Þ; rporprd ;

(

qzpsðr; hÞ þ Y zpsðr; hÞ ¼ 0. ð4bÞ

In Eq. (3),

ps0 ¼ rðcbrp=rdÞ
2=h (4c)

is the static pressure in the constrained disk produced by a unit displacement at the footprint which accounts
for the quasi-static uniform bulk pressure. The reason why the superposition in Eq. (3) is necessary is
explained in what follows. Since the dynamic solution satisfies homogeneous boundary conditions, the only
way that the forcing function of prescribed traction or displacement can be included in the problem is by
adding the static solution multiplied by the time dependence of the forcing function [14].

The second boundary condition in Eq. (4b) is mixed: over one part of the boundary only the pressure
gradient is prescribed while over the remaining boundary a combination of pressure and pressure gradient is
prescribed. This difficulty can be overcome by the influence method [15]. The circle bounding the footprint is
divided by nþ 1 equidistant radial stations with increment Drp:

0; r1; r2; . . . ; rn�1; rp; rk � rk�1 ¼ Drp ¼ const:

Assume a uniform pressure gradient of unit intensity to act over each annular segment rk�1 ! rk, hereafter
called the source segment. Evaluating the pressure gradient Pz;lkðr; z; tÞ from the kth source segment at the
center of the lth segment rcl ¼ ðrl þ rl�1Þ=2, hereafter called the target point, and following the expansion in
Eq. (3) yields

Pz;lkðrcl ; 0; tÞ ¼ �pzs;lkðrcl ; 0Þr €f wðtÞ þ pzd ;lkðrcl ; 0; tÞ, (5)

where pzs;lkðrcl ; 0Þ and pzd;lkðrcl ; 0Þ are static and dynamic pressure gradients at the lth target point due to the
kth source segment. Enforcing the condition of prescribed pressure gradient pzðtÞ ¼ pzf ðtÞ over the footprint at
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each time step yields a set of simultaneous equations in the weights ckðtÞ:

Xn

k¼1

Pz;lkðrcl ; 0; tÞckðtÞ ¼ pzf ðtÞ; l ¼ 1; n. (6a)

The combined pressure from all annular source segments is the superposition of Plkðr; z; tÞ multiplied by
time-dependent weights ckðtÞ as follows:

pðr; z; tÞ ¼
Xn

k¼1

Plkðr; z; tÞckðtÞ; l ¼ 1; n,

Plkðr; z; tÞ ¼ � ps;lkðr; zÞr €f wðtÞ þ pd ;lkðr; z; tÞ. ð6bÞ

Solutions of ps;kðr; z; tÞ and pd ;kðr; z; tÞ for each unit source segment are outlined in what follows. The static
solution due to the kth source segment takes the form

ps;kðr; zÞ ¼
Xmr

m¼1

csm;kðzÞJ0ðkrmrÞ; csm;kðzÞ ¼ amk sinhðkrmzÞ þ bmk coshðkrmzÞ, (7)

where J0ðkrmrÞ is the Bessel function and 1pmpmr is a truncated number of radial wavenumbers m in the
expansion. Substituting Eq. (7) in the boundary conditions

qrps;kðrd ; zÞ þ Y rps;kðrd ; zÞ ¼ 0,

qzps;kðr; 0Þ � Y zps;kðr; 0Þ ¼ � Hðr� rk�1Þ �Hðr� rkÞð Þ,

qzps;kðr; hÞ þ Y zps;kðr; hÞ ¼ 0 ð8Þ

and enforcing orthogonality of J0ðkrmrÞ yields

krmJ1ðkrmrdÞ � Y rJ0ðkrmrdÞ ¼ 0; m ¼ 1;mr,

am;k ¼
2ðrkJ1ðkrmrkÞ � rk�1J1ðkrmrk�1ÞÞ

r2dJ2
0ðkrmrdÞðkrm þ Y zZmÞ

; bm;k ¼ �am;kZm,

Zm ¼
krm þ Y z tanhðkr m hÞ

krm tanhðkrmhÞ þ Y z

. ð9Þ

Note that in Eq. (5), pzs;lkðrcl ; 0Þ ¼ qzps;kðrcl ; 0Þ.
The dynamic solution pd;kðr; z; tÞ satisfies

r2
0pd ;k �

1

c2b
qttpd;k ¼ 0 (10a)

and the homogeneous boundary conditions

qrpd ;kðrd ; z; tÞ þ Y rpd;kðrd ; z; tÞ ¼ 0,

qzpd;kðr; 0; tÞ � Y zpd;kðr; 0; tÞ ¼ 0,

qzpd;kðr; h; tÞ þ Y zpd;kðr; h; tÞ ¼ 0. ð10bÞ

Expand pd;kðr; z; tÞ in terms of its eigenfunctions

pd;kðr; z; tÞ ¼
X

m

X
n

amn;kðtÞcdnðzÞ J0ðkrmrÞ. (11a)

Applying the homogeneous boundary conditions in Eq. (10b) to J0ðkrmrÞ and cdnðzÞ produces the dispersion
relations

krmJ1ðkrmrdÞ � Y rJ0ðkrmrdÞ ¼ 0; m ¼ 1;mr, (11b)

sinðkznhÞ � znðzn sinðkznhÞ þ 2 cosðkznhÞÞ ¼ 0; n ¼ 1; nz, (11c)
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cdnðzÞ ¼ cosðkznzÞ þ zn sinðkznzÞ; zn ¼ Y z=kzn,

omn ¼ cbkmn ¼ cb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

zn þ k2
rm

q
, ð11dÞ

where omn is the eigenvalue corresponding to mode (m; n), krm is the mth root of the dispersion relation (11b),
and kzn is the nth root of the dispersion relation (11c). If Y r ¼ Y z ¼ 0, kzn ¼ 0 is the only root of Eq. (11c).
Substituting Eq. (3) in Eq. (2) with use made of Eq. (7) and (11a) and enforcing orthogonality of cdnðzÞ and
J0ðkrmrÞ yields

€amn;kðtÞ þ o2
mnamn;kðtÞ ¼ �Nsdmn;k rf iv

wðtÞ,

Nsdmn;k ¼
1

Nzzn

Z h

0

csm;kðzÞcdnðzÞdz; m ¼ 1;mr; n ¼ 1; nz,

Nzzn ¼
Y z

2k2
zn

ð1� cosð2kznhÞÞ þ
1

4kzn

ð1� Y 2
z=k2

znÞsinð2kznhÞ þ
h

2
ð1þ Y 2

z=k2
znÞ. ð12Þ

ð Þ
iv is the fourth derivative with respect to time. The solution to Eq. (12) is expressed as a Duhamel integral:

amn;kðtÞ ¼ �
rNsdmn;k

omn

Z t

0

sinomnðt� tÞf iv
wðtÞdt. (13)

Once the amn;kðtÞ are determined for each time step, then pd ;kðr; z; tÞ and its gradient pzd ;kðr; z; tÞ follow from
Eq. (11a). Finally, substituting pzd ;kðrcl ; 0; tÞ and pzs;kðrcl ; 0Þ from Eq. (7) in Eq. (5) yields the influence
coefficients Pz;lkðrcl ; 0; tÞ determining the weights ckðtÞ from Eq. (6a) and thus the transient pressure from Eq.
(6b). Acoustic displacements (w; u) are calculated from

qzpd;k ¼ �r q
2
ttwk; qrpd ;k ¼ �rq

2
ttuk: (14)

Note that in Eq. (14), qzpd;kðrcl ; 0; tÞ � pzd;lkðrcl ; 0; tÞ as defined in Eq. (5). Once histories of qzpd;k and qrpd ;k

are determined from solving Eq. (13), histories of wk and uk are calculated by integrating Eq. (14) numerically.

3. Results

Static solutions of a constrained layer adopting modal analysis and finite difference are compared first. In
order to re-use mobilities calculated in Ref. [16], material properties and geometry must be the same as in that
reference. Therefore, the geometry and material properties of the layer are

h ¼ 0:5 inð¼ 1:27 cmÞ; rd ¼ 2 inð¼ 5:08 cmÞ,

rp ¼ 0:375 inð¼ 0:95 cmÞ,

cb ¼ 4� 105 in=sð¼ 10:16 km=sÞ,

r ¼ 3� 10�4 lb s2=in4ð¼ 3:21 g=cm3Þ. ð15Þ

Two wall conditions are considered: rigid wall and compliant wall with Y r ¼ 5 in�1ð¼ 1:97 cm�1Þ and
Y z ¼ 5 in�1ð¼ 1:97 cm�1Þ [16]. Fig. 1 compares distributions of psðr; zoÞ, qzpsðr; zoÞ and qrpsðr; zoÞ computed by
the two methods for the compliant boundary at five equidistant stations along z; z ¼ 0, 0:25h, 0:5h, 0:75h, h

where the origin of (r; z) is at the center of the footprint. Fig. 1(b1,b2) reproduce the constraint
qzpsðr; 0Þ ¼ �ðHðrÞ �Hðr� rpÞÞ. Both qzpsðr; 0Þ and qrpsðr; 0Þ are discontinuous along the perimeter of the
footprint r ¼ rp as prescribed by boundary condition (4b). psðr; zoÞ is bell-shaped and can be approximated by
pðrÞ ¼ p0 þ p1 sec hðp2rÞ. Results from the two methods agree except for relatively small oscillations owing to
the truncation set by mr.

For the transient problem, Fig. 2 plots prescribed motion €f wðtÞ;
_f wðtÞ and f wðtÞ at the footprint.

€f wðtÞ is made
of 6 linear segments for this example:
1.
 Linear acceleration : €f w1ðtÞ ¼ a1t; 0ptpt1:

2.
 Constant acceleration : €f w2ðtÞ ¼ a1t1; t1ptpt2 :

3.
 Linear deceleration : €f w3ðtÞ ¼

€f w2ðt2Þ � a2ðt� t2Þ; t2ptpt3:
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Fig. 1. Static solution in cavity with compliant boundaries: Y r ¼ Y z ¼ 5 in�1; (a1), (b1), (c1) modal; (a2), (b2), (c2) finite difference:—,

z=h0; - - - - - - -, z=h0:25; - - - -, z=h ¼ 0:5;- - -z=h ¼ 0:75; - - -, z=h ¼ 1.
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4.
 Constant velocity : €f w4ðtÞ ¼ 0; _f w4ðt3Þ ¼ V 0; t3ptpt4:

5.
 Linear deceleration : €f w5ðtÞ ¼ �a3ðt� t4Þ; t4ptpt5:

6.
 Constant deceleration : €f w6ðtÞ ¼ �a3ðt5 � t4Þ; t5ptpt6:
Assuming that the first three time intervals are equal ðDt1 ¼ Dt2 ¼ Dt3; Dti ¼ ti � ti�1Þ and a2 ¼ a1, then a1
is determined by prescribing the constant velocity _f w4ðt3Þ ¼ U0. Also, setting a3=a2 to a known constant
determines t6 when the velocity vanishes. In this example, parameters defining €f wðtÞ are

Dt1;3 � Dt1 þ Dt2 þ Dt3 ¼ 2 ms; Dt4 ¼ 8ms;Dt5 ¼ 8 ms;

a3=a2 ¼ 1=15; U0 ¼ 2000 ft=sð¼ 609m=sÞ. ð16Þ

Histories of pðr; z0; tÞ for the case with rigid boundaries Y r ¼ Y z ¼ 0 are plotted in Fig. 3(a1,b1) according
to modal analysis and in Fig. 3(a2,b2) according to finite difference. Each Figure superimposes histories at
r ¼ 0, rp, 2rp. Comparing Fig. 3(a1,b1)–(a2,b2) shows that results from the two methods agree. For z ¼ 0
(Fig. 3(a1)), the peak pressure of first arrival at r ¼ 0 is three times larger than that at r ¼ 2rp. This difference
diminishes for t44ms as pressure homogenizes along r. The succeeding peak which starts appearing at
t ¼ 10ms is caused by reflections at the axis and lateral boundary. A mathematically equivalent description of
the reflections from the axis that may be preferable from the physical standpoint is that waves propagate
symmetrically from diametrically opposed directions. For the case with rigid boundaries, the average long-
time response pressure rises with time following the rise of the quasi-static ps0 f wðtÞ in Eq. (4c) where f wðtÞ is
the instantaneous displacement at the footprint (Fig. 2(c)). As z increases (Fig. 3(b1)), the peak pressure of first
arrival diminishes yet succeeding peaks are insensitive to z.

Fig. 4(a–d) plot the instantaneous distribution of pðr; z0; t0Þ along r at z0 ¼ 0 and z0 ¼ h. At t0 ¼ 1:5 ms soon
after start of motion (Fig. 4(a)), pðr; 0; t0Þ reaches its peak following a bell-shaped distribution. For t0 ¼ 2:5ms
(Fig. 4(b)), pðr; h; t0Þ reaches its peak while pðr; 0; t0Þ diminishes. At t0 ¼ 3:5 ms (Fig. 4(c)), pressure continues
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Fig. 2. Prescribed motion at footprint: (a) acceleration, (b) velocity, (c) displacement.
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Fig. 3. Pressure histories in cavity with rigid boundaries: Y r ¼ Y z ¼ 0, Dt13 ¼ 2ms, U0 ¼ 2000 ft=s (al), (b1) modal: (a2), (b2) finite

difference. — r ¼ 0; - - - - -, r ¼ rp;- - - -, r ¼ 2rp. (a1) and (a2): z ¼ 0; (b1) and (b2): z ¼ h.
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Fig. 4. Instantaneous pðr; z0; t0Þ distribution in cavity with rigid boundaries, Dt13 ¼ 2ms, U0 ¼ 2000 ft=s, —, z0 ¼ h;- - - -, z0 ¼ 0.

(a) t0 ¼ 1:5ms, (b) 2.5 ms, (c)3.5ms, (d) 4.5 ms.
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Fig. 5. Effect of Dt1;3 and U0 on histories in cavity with rigid boundaries. (al), (b1) Dt1;3 ¼ 1ms, U0 ¼ 1300 ft=s; (a2), (b2) Dt1;3 ¼ 4ms,
U0 ¼ 3300 ft=s. r ¼ 0; - - - -, r ¼ rp ———, r ¼ 2rp. (a1) and (a2): z ¼ 0; (b1) and (b2): z ¼ h.
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both to homogenize and to decrease till the wave front reaches the lateral boundary r ¼ rd at t0 ¼ 4:5ms
(Fig. 4(d)). Pressure rises after each reflection from the lateral boundary and axis.

The sensitivity to parameters Dt1;3 and U0 of pressure response is demonstrated in Fig. 5. For Dt1;3 ¼ 1ms
and U0 ¼ 1300 ft=sð¼ 396m=sÞ, histories are shown in Fig. 5(a1,b1). Comparing Fig. 5(a1) and 3(a1) shows
that at the footprint, a shorter Dt1;3 compensates for a lower U0 yielding a narrower peak with the same
magnitude and width proportional to Dt1;3. However, this does not apply at z ¼ h where a shorter Dt1;3 yields a
stronger peak despite the difference in U0 (Fig. 5(b1)). For Dt1;3 ¼ 4 ms and U0 ¼ 3200 ft=sð¼ 975m=sÞ
(Fig. 5(a2) and (b2)) the same phenomenon is observed at the footprint; that is a higher U0 compensates for
the longer Dt1;3 yielding a wider peak with the same magnitude as evidenced by comparing Figs. 5(b1) and
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3(b1). Consistent with the way Dt1;3 affects peak pressure remote from the footprint, comparing Figs. 5(b2),
3(b1) and 5(b1) show that a longer Dt1;3 yields a weaker and wider peak.

Fig. 6 plots pmax against U0 with Dt1;3 held fixed and vice versa. Fig. 6(a1) and (a2) shows that pmax varies
linearly with U0. Fig. 6(b1) and (b2) shows that pmax varies nonlinearly with Dt1;3 following the relation
pmax / U0Dt�a13 , where the exponent a depends on z. pmax asymptotes to a constant value as Dt1;3! 0 when the
slope of the acceleration profile in Fig. 2(a) approaches infinity. For Dt1;3o1, dependence of pmax on Dt1;3
undergoes a transition when its value at z ¼ h exceeds that at the footprint z ¼ 0. Fig. 7(a) and (b) plots
pressure histories at z ¼ 0 and z ¼ h for U0 ¼ 1600 ft=sð¼ 488m=sÞ and two values of Dt1;3 lying on each side
of the transition. Fig. 7(a1) shows that at Dt1;3 ¼ 0:2ms, the pressure over the footprint is trapezoidal lasting
1 ms which is � 5Dt1;3. In Fig. 7(a1), the second peak originating from reflection at z ¼ h has twice the
amplitude and width � 2Dt1;3. Fig. 7(b1) shows that at z ¼ h peak of first arrival is 2.2 times higher than
footprint pressure consistent with its value after reflection appearing as the second peak in Fig. 7(a1).
Fig. 7(a2) shows that at Dt1;3pðDt1;3ÞT ¼ 1ms footprint pressure reverts to being the highest with the familiar
bell-shaped response. This also applies to the peak of first arrival at z ¼ h shown in Fig. 7(b2). ðDt1;3ÞT is a
function of Eb and r but is almost independent of U0.

The effect of boundary compliance on pressure response is shown in Fig. 8(a) and (b) with U0 and Dt1;3 the
same as those of Fig. 3. Mobilities of the radial and axial boundaries are set to Y r ¼ Y z ¼ 5 in�1ð¼ 1:97 cm�1Þ
[16]. Comparing pressure histories in Figs. 3(a1) and 8(a) reveal that the magnitude of footprint pressure
remains the same since it is not affected by the neighboring boundary. However, at t ¼ 10ms, pressure reflected
from the radial boundary r ¼ rd is reduced substantially by wall compliance. At z ¼ h, the peak pressure of
first arrival (Fig. 8(b)) is half that for the case with rigid boundaries (Fig. 3(b1)) while the response following
that peak is attenuated. Instantaneous pressure profiles along r are shown in Fig. 9(a–c). Comparing profiles in
Fig. 9(b) to those for rigid walls in Fig. 4(b) shows how pressure is reduced due to boundary compliance. Also,
comparing profiles in Fig. 9(c) to those in Fig. 3(c) shows how compliance attenuates response following the
first peak.

Numerical results by the EPIC2 general purpose finite difference program were determined for the following
example [17]: (1) ceramic disk 1/200( ¼ 1.27 cm) thick and 200( ¼ 5.08 cm) in diameter ; (2) tungsten capsule
1/400( ¼ 0.635 cm) thick; (3) steel cylindrical projectile 1.500( ¼ 3.81 cm) long and 0.75’’(1.91 cm) in diameter
striking at 2300 ft/s ( ¼ 701m/s).
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Fig. 6. Variation of pmax. with U0 and Dt1;3 in a cavity with rigid boundaries. (a1), (bl) z ¼ 0, (a2), (b2) z ¼ h.



ARTICLE IN PRESS

4.E6

2.E6

0

4.E6

2.E6

0

(a1)

(b1)

(a2)

(b2)

1.0 2.0 3.0 4.0 5.00 1.0 2.0 3.0 4.0 5.00

Fig. 7. Pressure histories for small Dt1;3 in a cavity with rigid boundaries. (a1), (bl) Dt13 ¼ 0:2ms, (a2), (b2) Dt13 ¼ 1:0ms. — r ¼ 0; - - - -,

r ¼ rp; ———, r ¼ 2rp; U0 ¼ 1600 ft=s.

(a)

(b)

2.E6

1.E6

0

1.E6

0

-1.E6

-1.E6
0 2 4 6 8 10

p
p

Fig. 8. Pressure histories in cavity with compliant boundaries: Y r ¼ Y z ¼ 5 in�1, Dt13 ¼ 2ms U0 ¼ 2000 ft=s, (a) z ¼ 0, (b) z ¼ h. — r ¼ 0;

- - - - -, r ¼ rp; - - - - -, r ¼ 2rp.

M. El-Raheb / Journal of Sound and Vibration 293 (2006) 320–334 329
Fig. 10 compares pressure histories on the top and bottom faces of the ceramic disk with those from the
acoustic model with compliant boundaries. Wall dynamic mobility was determined from an analytical elasto-
dynamic model of the capsule developed in Ref. [16]. Since failed ceramic does not resist tensile stress, only
compressive stress is shown in the acoustic histories. At z ¼ 0 and h, the pulse of first arrival from the two
models compares favorably both in magnitude and shape. Reflected peaks do not agree as well since the EPIC
results decay rapidly from artificial viscosity necessary to stabilize the numerical calculations. Fig. 11
compares time snap-shots of pressure distribution along r predicted by the acoustic model and those from
EPIC2. The 0.5 ms lag between corresponding snap-shots of EPIC2 and the acoustic models allows for the
propagation time of the wave starting impact across the capsule’s top plate. In spite of the limited number of
points in the EPIC2 results, comparison is favorable.
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4. Conclusion

Pressure generated from impact on the mass of confined comminuted material is modeled by the acoustic
wave equation that derives from the elasto-dynamic equations when shear stress vanishes. The transient
response from prescribed acceleration at the boundary is treated adopting both a modal and a finite difference
approach. In the modal approach, external excitation is modeled by the static-dynamic superposition method.
The difficulty of mixing boundary conditions from finite wall compliance is overcome by the influence method.
Noteworthy results are:
(1)
 Histories from the modal and finite difference approaches agree, justifying the linear acoustic treatment.

(2)
 Rise time in pressure history is proportional to Dt1;3 while pmax is proportional to U0Dt�a13 .

(3)
 For Dt1;3oðDt1;3ÞT , pmax goes through a transition when its value at face z ¼ h exceeds that at the footprint

z ¼ 0. ðDt1;3ÞT is a function of Eb and r but is almost independent of U0.
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(4)
 Wall compliance reduces pressure peaks of first arrival everywhere except at the footprint.

(5)
 Histories and pressure snap-shots of the acoustic model agree with results of the EPIC2 computer program

implying that locally, confined comminuted material behaves indeed like a fluid.
Appendix A. Finite difference formulation

Consider the axisymmetric acoustic equation in cylindrical coordinates:

½qrr þ 1=rqr þ qzz�pðr; z; tÞ ¼ 1=c2bqttpðr; z; tÞ (A.1)

with boundary conditions

qrpð0; z; tÞ ¼ 0, (A.2a)

qrpðrd ; z; tÞ þ Y rpðrd ; z; tÞ ¼ 0, (A.2b)
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qzpðr; 0; tÞ � Y zpðr; 0; tÞ ¼ 0, (A.2c)

qzpðr; h; tÞ ¼
�r €f wðtÞ½HðrÞ �Hðr� rpÞ�; 0prprp;

�Y zpðr; h; tÞ; rporprd ;

(
(A.2d)

where ( � ) is time derivative and letting z now have its origin at the non-excited boundary. Condition (A.2a) is
symmetry about the axis of revolution r ¼ 0, condition (A.2b) is the resilient boundary at r ¼ rd , condition
(A.2c) is the resilient boundary at z ¼ 0, and condition (A.2d) is the prescribed acceleration for 0prprp and
resilient boundary for rpprprd at z ¼ h.

Form the rectangular grid with nodes along r and z denoted by i and j, respectively:

i ¼ 1! nr; drprprd � dr; dr ¼ rd=ðnr þ 1Þ;

j ¼ 1! nz; dzpzph� dz; dz ¼ h=ðnz þ 1Þ:
(A.3)

In this grid, nodes do not include points on the boundaries. Expressing Eq. (A.1) in central difference to first
order yields the following relations depending on position:
(1)
 Internal points drorord � dr; dzozoh� dz ) 2pipnr � 1; 2pjpnz � 1,

a1piþ1;j þ a2pi�1;j þ a3pi;j þ a4ðpi;jþ1 þ pi;j�1Þ ¼ €pi;j=c2b,

a1 ¼
1

d2
r

þ
1

2ridr

 !
; a2 ¼

1

d2
r

�
1

2ridr

 !
,

a3 ¼ � 2
1

d2
r

þ
1

d2
z

 !
; a4 ¼

1

d2
z

. ðA:4aÞ
(2)
 Corner point r ¼ dr; z ¼ dz ) i ¼ 1; j ¼ 1,

a1piþ1;j þ ða2 þ a3 þ a4ð1� Y zdzÞÞpi;j þ a4pi;jþ1 ¼ €pi;j=c2b. (A.4b)
(3)
 Points along axis r ¼ dr; dzozoh� dz ) i ¼ 1; 2pjpnz � 1,

a1piþ1;j þ ða2 þ a3Þpi;j þ a4ðpi;jþ1 þ pi;j�1Þ ¼ €pi;j=c2b. (A.4c)
(4)
 Corner point r ¼ rd ; z ¼ h� dz ) i ¼ 1; j ¼ nz,

a1piþ1;j þ ða2 þ a3 þ a4ð1� Y zdzÞÞpi;j þ a4pi;j�1

¼ €pi;j=c2b þ r €f wðtÞ½HðrÞ �Hðr� rpÞ�=dz. ðA:4dÞ
(5)
 Points along drorord � dr; z ¼ dz ) 2pipnr � 1; j ¼ 1,

a1piþ1;j þ a2pi�1;j þ ða3 þ a4ð1� Y zdzÞÞpi;j þ a4pi;jþ1 ¼ €pi;j=c2b. (A.4e)
(6)
 Points along drorord � dr; z ¼ h� dz ) 2pipnr � 1; j ¼ nz,

a1piþ1;j þ a2pi�1;j þ ða3 þ a4Þpi;j þ a4pi;j�1

¼ €pi;j=c2b þ r €f wðtÞ=dz; drorprp,

a1piþ1;j þ a2pi�1;j þ ða3 þ a4ð1� Y zdzÞÞpi;j þ a4pi;j�1

¼ €pi;j=c2b; rpor � rd � dr. ðA:4fÞ
(7)
 Corner point r ¼ rd � dr; z ¼ dz ) i ¼ nr; j ¼ 1,

a2pi�1;j þ ða1ð1� Y rdrÞ þ a3 þ a4ð1� Y zdzÞÞpi;j þ a4pi;jþ1 ¼ €pi;j=c2b. (A.4g)
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(8)
 Points along r ¼ rd � dr; dzozoh� dz ) i ¼ nr; 2pjpnz � 1,

a2pi�1;j þ ða1ð1� Y rdrÞ þ a3Þpi;j þ a4ðpi;jþ1 þ pi;j�1Þ ¼ €pi;j=c2b. (A.4h)
(9)
 Corner point r ¼ rd � dr; z ¼ h� dz ) i ¼ nr; j ¼ nz,

a2pi�1;j þ ða1ð1� Y rdrÞ þ a3 þ a4ð1� Y zdzÞÞpi;j þ a4pi;j�1 ¼ €pi;j=c2b. (A.4i)
In Eq. (A.4a)–(A.4i), the differential equation is satisfied at all points in the grid and boundary conditions
are enforced at points along its perimeter. In terms of finite difference, Eq. (A.2d) takes the form

pi;jþ1 ¼ pi;j � rdz
€f wðtÞ½HðrÞ �Hðr� rpÞ�; 1pipintðrp=drÞ; j ¼ nz. (A.5)

In Eq. (A.5), rdz
€f wðtÞ½HðrÞ �Hðr� rpÞ�=d2

z is the forcing term appearing on the right hand side of Eqs.
(A.4d) and (A.4f).

Applying Eqs. (A.4a)–(A.4i) at all internal points in the grid (A.3) produces a set of ordinary differential
equations in pi;jðtÞ cast in the form of tri-diagonal blocks as

€p ¼ c2bðMpp� FðtÞÞ, (A.6)

Mp ¼

A1 C1

B2 A2 C2

d d d

Bnr�1 Anr�1 Cnr�1

Bnr
Anr

2
6666664

3
7777775
.

Bi and Ci are (nz � nz) diagonal matrices, Ai is a (nz � nz) banded matrix with bandwidth 3, and F is the
global vector of the forcing function in Eqs. (A.4d) and (A.4f). For each point j 3 ð1pjpnzÞ along an i line in
the grid, coefficients of pi;j in the Laplacian define Ai, coefficients of pi�1;j define Bi, and coefficients of piþ1;j

define Ci. The time derivative is expressed in central difference to first order allowing integration in time.
Viscous damping is included following Landau and Lifshitz [18]:

ð1þ 2~n=c2bqtÞr
2
0p� 1=c2bqttp ¼ 0. (A.7)

This modifies Eq. (A.6) to the following first-order system:

_p ¼ q; _q ¼ c2bMppþ 2~nMpq� FðtÞ, (A.8)

where ~n is the equivalent of kinematic viscosity in a fluid. For sand, ~n � 103 in2=s ð¼ 6:45� 103 cm2=sÞ which is
6 orders of magnitude larger than that of water.
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